Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance.

نویسندگان

  • Noriko Yamagishi
  • Daniel E Callan
  • Stephen J Anderson
  • Mitsuo Kawato
چکیده

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top-down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2-10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top-down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2-10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elsevier Editorial System(tm) for Brain Research Manuscript Draft Response Letter Reviewer Number 1 Attentional Changes in Pre-stimulus Oscillatory Activity within Early Visual Cortex Are Predictive of Human Visual Performance

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top-down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by ex...

متن کامل

Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex.

Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonanc...

متن کامل

Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention

Oscillatory neuronal synchronization, within and between cortical areas, may mediate the selection of attended visual stimuli. However, it remains unclear at and between which processing stages visuospatial attention modulates oscillatory synchronization in the human brain. We thus combined magnetoencephalography (MEG) in a spatially cued motion discrimination task with source-reconstruction te...

متن کامل

Auditory modulation of visual stimulus encoding in human retinotopic cortex

Sounds can modulate visual perception as well as neural activity in retinotopic cortex. Most studies in this context investigated how sounds change neural amplitude and oscillatory phase reset in visual cortex. However, recent studies in macaque monkeys show that congruence of audio-visual stimuli also modulates the amount of stimulus information carried by spiking activity of primary auditory ...

متن کامل

Attentional modulation in visual cortex is modified during perceptual learning.

Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity in visual cortex. Theoretical treatments tend to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1197  شماره 

صفحات  -

تاریخ انتشار 2008